Synfuels International, Inc.
A New GTL, A Better GTL

✓ In-Field Flaring reduction
✓ Scalable from 5 - >250 MMSCFD
✓ Low Capital Cost
✓ Clean Burning Gasoline Production
✓ High Grade Ethylene Production

.......The Future of GTL and GTE Technology

20 March, 2008
A presentation to:

Global Gas Flaring Reduction
A Public-Private Partnership

This document is not intended to be relied upon in connection with a purchase of securities. These financial highlights are for information purposes only and do not constitute an offer to sell or a solicitation to buy the securities referred to herein. The securities are offered only by means of the Confidential Offering Memorandum. Only a formal Offering Memorandum is intended to be relied upon in connection with the purchase of securities. This document represents a historical view of financial results and may not be an indication of future performance.
Synfuels GTL Technology does not simply reduce flaring, it creates a clean burning fuel!

Dr. Joel Cantrell fueling the Synfuels Saturn Auto
There is a market for over 3,000 Synfuels GTL & GTE Plants Globally

Limited Gas pipeline networks create the demand for Synfuels plants globally

Growing demand for gasoline creates the need for Synfuels plants

Ethylene based products are growing rapidly in demand.

Natural gas is in high demand. The economic and physical constraint is transportation. Synfuels converts gas to gasoline for local use or easy transportation in trucks or oil pipelines.

The gasoline market is growing rapidly in Asia and is ideally served by stranded gas GTL plants.

Synfuels GTE plants produce ethylene for plastic and clothing fabrics establishing local, value adding industry.
Synfuels Technology Earns Carbon Credits:

Analysis:
Andre Mech of MECH & Associates was engaged to analyze the Synfuels Technology for greenhouse gas emission reduction. Mr. Mech is well respected in the industry and is frequently engaged by the European Commission.

Findings:
Synfuels reduces GHG in every configuration vs. Re-injection vs. Flaring vs. Venting
ASSOCIATED GAS Potential

According to the World Bank, Global Gas Flaring Reduction Partnership, 5.3 trillion cubic feet of natural gas are being flared and vented annually.

A typical, in field flare elimination Synfuels GTL plant is 20 MMSCFD. If just 10% of the flared gas worldwide is eliminated by Synfuels GTL plants and Synfuels plant owners received a conservative $70.00 per barrel of gasoline, then they would earn:

>$3.1 billion Clean Gasoline / year!

(≈44 million bbl)
Stranded Gas reserves are reserves that can’t be economically exploited because they are either too far from a market or too difficult to develop.

Record high crude prices, skyrocketing energy demand, the need to maintain stable supplies, and governments enacting stricter air-quality standards have spurred intense interest in clean, commercial-ready fuels.

Yet, one abundant resource sits virtually untapped. It is estimated there are 4,500 trillion cubic feet of stranded natural gas around the world with the potential of creating several hundred billion barrels of oil equivalent. That is comparable to the oil reserves of Saudi Arabia and represents billions of dollars in unrecovered assets. Syntroleum has the answer for an energy-hungry world.
STRANDED GAS REVENUE

Approximately 40% of the world's available natural gas reserves are classified as "stranded gas." BP and the US DOE have estimated there is as much as 3000 TCF of Stranded Gas worldwide.

If just 10% of the stranded gas worldwide is processed by Synfuels GTE & GTL plants, it would earn:

$1.75 trillion Clean Gasoline

(25.0 Billion bbl)
Synfuels Has Succeeded!

Breakthrough Technology that Works Now

Continuous runs with commercial yields were demonstrated in December 2006. Full GTL production began at the demonstration plant in Texas in August 2005.

Synfuels plants meet or exceed Occupational Safety & Health Administration standards.
The Science of Synfuels

\[2\text{CH}_4 \xrightarrow{\text{fast}} \text{C}_2\text{H}_6 + \text{H}_2 \]
\[\xrightarrow{\text{fast}} \text{C}_2\text{H}_4 + \text{H}_2 \]
\[\xrightarrow{\text{fast}} \text{C}_2\text{H}_2 + \text{H}_2 \]
\[\xrightarrow{\text{slow}} 2\text{C} + \text{H}_2 \]

\[\text{C}_2\text{H}_2 + 2\text{H}_2 \xrightarrow{\text{high selectivity}} \text{C}_2\text{H}_4 \]
Synfuels International GTE/GTL Technology

GTE: Ethylene

H₂, CO → CO₂

Natural Gas → H₂, CO, Acetylene, CO₂ → Absorbent

Oxygen

Pyrolysis

Absorber

Hydrogenation

Acetylene

Absorbent

Ethylene

GTL: Gasoline

Gasoline Blendstock → Oligomerization
Hydrogenation Conversion Rates & Selectivity are Highly Efficient

Typical Hydrogenation Conversion and Selectivity
Hand Made Catalyst
Dr. Marvin Johnson

Extended Duration Conversion and Selectivity
Hand Made Catalyst
Dr. Marvin Johnson
Hydrogenation has been Effectively Developed for Commercial Catalysts

Extended Duration Conversion and Selectivity
Commercial Catalyst Test At OU
Dr. Daniel Resasco

Extended Duration Conversion and Selectivity
Commercial Catalyst Test At OU
Dr. Daniel Resasco
Typical Product Composition

<table>
<thead>
<tr>
<th>Component</th>
<th>Mol %</th>
<th>Component</th>
<th>Mol %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethane</td>
<td>0.180</td>
<td>Dimethylhexanes</td>
<td>0.439</td>
</tr>
<tr>
<td>Propane</td>
<td>3.143</td>
<td>Trimethylpentanes</td>
<td>0.641</td>
</tr>
<tr>
<td>Isobutane</td>
<td>4.511</td>
<td>Trimethylcyclopentanes</td>
<td>0.060</td>
</tr>
<tr>
<td>n-Butane</td>
<td>6.440</td>
<td>Toluene</td>
<td>6.164</td>
</tr>
<tr>
<td>2,2 Dimethylpropane</td>
<td>0.016</td>
<td>Methylheptanes</td>
<td>2.130</td>
</tr>
<tr>
<td>Isopentane</td>
<td>9.703</td>
<td>Dimethylcyclohexanes</td>
<td>0.465</td>
</tr>
<tr>
<td>n-Pentane</td>
<td>5.817</td>
<td>Methylhexylcyclopentanes</td>
<td>1.384</td>
</tr>
<tr>
<td>2,2 Dimethylbutane</td>
<td>0.204</td>
<td>Ethylbenzene</td>
<td>2.708</td>
</tr>
<tr>
<td>2,3 Dimethylbutane</td>
<td>0.479</td>
<td>Xylenes</td>
<td>9.597</td>
</tr>
<tr>
<td>2-Methylpentane</td>
<td>5.945</td>
<td>n-Octane</td>
<td>0.276</td>
</tr>
<tr>
<td>3-Methylpentane</td>
<td>2.254</td>
<td>Nonane Paraffins</td>
<td>1.394</td>
</tr>
<tr>
<td>n-Hexane</td>
<td>2.577</td>
<td>Nonane Naphthenes</td>
<td>1.012</td>
</tr>
<tr>
<td>Methylcyclopentane</td>
<td>1.655</td>
<td>Nonane Aromatics</td>
<td>3.143</td>
</tr>
<tr>
<td>Benzene</td>
<td>0.755</td>
<td>n-Nonane</td>
<td>0.082</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>2.844</td>
<td>Decane Paraffins</td>
<td>6.871</td>
</tr>
<tr>
<td>Dimethylpentanes</td>
<td>2.539</td>
<td>Decane Naphthenes</td>
<td>0.593</td>
</tr>
<tr>
<td>2-Methylhexane</td>
<td>0.987</td>
<td>n-Decane</td>
<td>1.291</td>
</tr>
<tr>
<td>3-Methylhexane</td>
<td>0.687</td>
<td>Undecanes</td>
<td>2.685</td>
</tr>
<tr>
<td>Dimethylcyclopentanes</td>
<td>1.230</td>
<td>Dodecanes</td>
<td>1.232</td>
</tr>
<tr>
<td>n-Heptane</td>
<td>0.771</td>
<td>Tridecanes</td>
<td>1.130</td>
</tr>
<tr>
<td>Methylcyclohexane</td>
<td>1.161</td>
<td>Tetradecanes +</td>
<td>2.317</td>
</tr>
<tr>
<td>Ethylcyclopentane</td>
<td>0.488</td>
<td>TOTAL</td>
<td>100.000</td>
</tr>
</tbody>
</table>
Proven, Patented, Automated

Proven Technology in Operation
Simplicity of Design & Manufacture

Safe & Controllable
Fully Automated
The following patents have been issued

6,130,260 Method for converting natural gas to liquid hydrocarbons
6,323,247 Method for converting natural gas to liquid hydrocarbons
6,433,235 Method for converting methane containing gaseous hydrocarbon mixtures to liquid hydrocarbons
6,602,920 Method for converting natural gas to liquid hydrocarbons
7,045,670 Process For Liquid Phase Hydrogenation
7,119,240 Method for converting natural gas to olefins
7,183,451 Process For The Conversion Of Natural Gas To Hydrocarbon Liquids
7,208,647 Process For The Conversion Of Natural Gas To Reactive Gaseous Products Comprising Ethylene
7,250,449 High temperature hydrocarbon cracking
7,408,091 Process For Liquid Phase Hydrogenation
1. Licensing is Industry Standard
2. Engineering and IP are Maintained In-house
3. Construction Services are Under Contract
4. Royalties are Industry Standard
Strong Investment Rates of Return

✓ Plants can generate all power requirements.
✓ At today’s gasoline prices, profits are very strong.
✓ Plant delivery in under 24 months.
✓ A true energy solution for the world today.
Synfuels GTL/GTE Technology

- Represents a tool the World Bank GGFRP has never had.

- In field GTL has never before been available
 - to reduce flaring
 - to create jobs
 - at affordable prices
The Science of Texas A & M Commercialized by Synfuels

Mr. Ben Weber, Jr. BA
Founder and Chairman

Mr. Thomas Rolfe B.Sc MBA
President

Mr. Charles Matar B.S. M.A.
Vice President, MENA

Dr. Edward Peterson, Ph.D., P.E.
Chief Engineer

Dr. Kenneth Hall, Ph.D M.S. B.S.
Head of Chemical Engineering, Texas A and M

Prof. Jerry Bullin
Professor, Texas A and M
The Executive Team

Ben R. Weber, Jr., Chairman A native of Dallas and a 1975 graduate of the University of Texas at Austin with a degree in Business Administration, Mr. Weber was associated with a Dallas based independent oil and gas operator from 1975 until 1982 prior to establishing Weber Energy Corporation. Over the past 23 years, Mr. Weber and Weber Energy Corporation built a strong, successful track record and gained recognition as an aggressive oil and gas operator at the forefront of technology. Mr. Weber has been recognized by and has received numerous awards from Petroleum Engineer International and the Hard Hatters Club of Dallas for his company's outstanding achievements in oil and gas exploration and operations. Mr. Weber is a former member of the Independent Petroleum Association of America (IPAA), Texas Independent Producers and Royalty Association (TIPRO), North Texas Independent Producers Association and the Hard Hatters Club of Dallas and has served on the education committee of the Dallas Petroleum Club. Along with his business accomplishments, Mr. Weber is a former member and Chairman of the Lone Star Dallas Chapter of Young Presidents Organization (YPO) and served on the Board of Trustees for Children's Medical Center of Dallas, The Science Place of Dallas, and the Dallas County Heritage Society. Mr. Weber currently is a Trustee on the board of Baylor Healthcare Foundation.

Thomas A. Rolfe President With a Masters of Business Administration and a Bachelors Degree in Computer Science, he has been employed by major US and European corporations during the last two decades in 28 countries around the globe. Mr. Rolfe has focused his career on new product and technology development and introduction of complex technology systems for companies serving military, government and commercial customers. Mr. Rolfe has published several papers on complex technology development and has taught as a guest lecturer at Oxford University, England, and the Haas School of Business, University of Berkeley. Mr. Rolfe is also currently Chief Executive of ASG Financial Corp., a Canadian Investment Bank and has previously advised the boards of many international corporations based in the United States and Europe.

Charles Edward Matar Vice President for Middle East North Africa (MENA) business development Mr. Matar has over 20 years of experience in sales and marketing in the Middle East. He has in-depth knowledge of conducting business in the Middle East and North Africa, as well as full command of the Arabic language and the many spoken dialects. He understands the various cultures and traditions that affect business ventures in and out of the region. Mr. Matar was a consultant for a number of large firms in the GCC, and was instrumental in closing a number of multi-million dollar licensing and distribution deals in Egypt, Saudi Arabia, and UAE.

Edward Peterson, Ph.D., P.E., Chief Engineer, received his Ph.D. from Oklahoma State University and has 23 years of experience in the oil and gas industry, ranging from basic research to major chemical and petroleum plant upgrades, including design and operation of pilot plants and implementation of new technology. Dr. Peterson provides expert knowledge and interfaces with our research resources and has been actively involved with the design of the new Synfuels technology since its inception. Dr. Peterson is one of the inventors on several issued and pending Synfuels patents and continues to be a vital asset to the technology.
The Scientific & Support Team

TEXAS A&M UNIVERSITY TEAM

The following individuals are the inventors of the gas-to-liquid process developed by Synfuels International and are listed as such on the patent applications:

Kenneth R. Hall, Ph.D., P.E., Past Jack E. & Frances Brown Chair and Chemical Engineering Department Head at Texas A&M University. Currently professor and associate director of TEES (Texas Engineering Experimental Station). Dr. Hall is one of the inventors of the gas-to-liquids technology behind the Synfuels’ process. Dr. Hall was the motivating force which enabled Texas A&M and Synfuels to join efforts to research, develop and implement the GTL technology.

Rayford G. Anthony, Ph.D., P.E., is the C.D. Holland Professor at Texas A&M University and is one of the inventors of the Synfuels GTL process.

Aydin Akgerman, Ph.D., P.E., (deceased 12/03), was the Chevron II Professor and Director of the Kinetics, Catalysis and Reaction Engineering Center at Texas A&M University. Dr. Akgerman was one of the inventors of the Synfuels GTL process.

Philip T. Eubank, Ph.D., P.E., is the Joe M. Nesbitt Professor at Texas A&M University and is one of the inventors of the Synfuels GTL process.

Jerry A. Bullin, Ph.D., P.E., is a Professor Emeritus at Texas A&M University and is one of the inventors of the Synfuels GTL process. Dr. Bullin is also the President of Bryan Research & Engineering, Inc.

Stephen McGovern, Ph.D., P.E., is under contract to work with Synfuels on the final conversion step of the Synfuels process. Dr. McGovern graduated Drexel University with a BS in Chemical Engineering and received his Ph.D. in Chemical Engineering at Princeton University. Dr. McGovern has spent 27 years working for Mobil and much of his experience is directly related to the technology to be utilized in the final conversion step. Dr. McGovern holds 16 patents and has written 13 articles about this area of expertise.

International Liaison

Oliver “Buck” Revell, is International Liaison to Synfuels International. Mr. Revell is a former Deputy Director of the FBI and is President of Revell Group International, a global consulting firm. Mr. Revell is instrumental in networking with individuals, businesses and governments around the world in a marketing and licensing position for Synfuels.
The Plant Engineering Team

ENGINEERING SERVICES

Dr. Marvin M. Johnson, Research Fellow, National Academy of Engineering
Dr. Johnson is one of the most respected Chemical Engineers of the last century. He spent his career primarily at Phillips Petroleum Company and is credited with numerous important patents including applications of catalysis in petroleum refining, particularly the discovery of metals passivation technology for catalytic cracking.

Dr. Marvin Johnson is a member of the National Academy of Engineering; a recipient of the National Medal of Technology; winner of the IRI Achievement Award; the American Society of Curate Inventors’ Distinguished Corporate Inventor Award; the Phillips Distinguished Inventor Award; the American Chemical Society Oklahoma Chemist Award; the American Chemical Society Southwest Region Award for Chemical Research; the Oklahoma Bar Association Inventor of the Year Award; the IR-100 Award for PROP oil recycling along with Drs. Nowack and Tabler, and twice awarded by the Oklahoma Society of Professional Engineers with the Outstanding Engineer of the Year award. He was inducted into the OSU Engineering Hall of Fame and given the “Hero” award by the American Chemical Society.

Dr. Johnson’s areas of expertise include kinetics and catalysts, reactor design and refining processes and products. He is an member of the ACS, a Fellow of the AIChE and a member of Sigma Xi. He is responsible for a number of catalysts and processes in use at Conoco Phillips and in the industry. He has over 225 U.S. patents. Of these patents, more than half relate to hydrogenation processes and catalysts. Dr. Johnson is also the co-inventor of two international patents for Synfuels’ liquid-phase hydrogenation process and catalyst.

Bryan Research & Engineering, Inc. was awarded the initial engineering contract to lay the groundwork for the research and ongoing development of the Synfuels GTL technology. With their close proximity to Texas A&M University, they continue to provide engineering expertise on the project. Bryan Research & Engineering (BR&E) is a widely recognized privately-owned provider of software and engineering solutions to the oil, gas, refining and chemical industries. BR&E has combined company research and development in process simulation with state of the art computerized engineering technology.

Dr. Joel Cantrell is a development engineer for Bryan Research & Engineering, Inc. Dr. Cantrell also acts as an independent consultant hired by Synfuels to head the coordination of efforts with Texas A&M on the development of the GTL technology and supervises the operations at the demonstration facility. Dr. Cantrell received his B.S. in chemical engineering at Texas A&M University in 1981 and his Ph.D. in chemical engineering from Lehigh University in 1996. Dr. Cantrell has designed and implemented software to evaluate the dynamics of natural gas plant economics and developed advanced multivariable process control software. Dr. Cantrell has taught oil, natural gas, and electric power courses and has authored several papers concerning various aspects of the oil and gas industry. Dr. Cantrell is the inventor of one of the GTL patents utilized by the Synfuels technology.